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Abstract—A theoretical study is made on the onset of the Marangoni convection in the horizontal layer
of an electrically conducting liquid, to which a vertical temperature gradient and a magnetic field are applied.
The analytical solution is obtained for the critical condition of the onset of the Marangoni convection in
an infinite liquid layer, and the numerical analysis is carried out for a finite liquid layer confined in a
circular cylindrical container. The effects of the magnetic field, the Biot number at the free surface and the
aspect ratio of the liquid layer are made clear. The asymptotic behavior of the critical Marangoni number
for the large Hartmann number is also obtained. It is found that both the critical Marangoni number and
the number of roll cells which generate at a marginal state increases with the intensity of the magnetic field,
and that the effect of the aspect ratio of the liquid layer of both the critical Marangoni number and the
velocity and temperature field becomes small as the magnetic field is intensified. It also becomes clear that
the rolls are generated when the magnetic field is inclined, while the Bénard-type cells are generated under
vertical magnetic field in the case of an infinite liquid layer.

INTRODUCTION

NATURAL convection driven by the gradient of an
interfacial or surface tension due to a non-uniform
temperature distribution is called thermocapillary or
Marangoni convection. Such a convective flow gives
rise to serious problems in several cases, for example,
in crystal growth from a melt. It is often requested
to suppress the onset of convection. Since buoyancy
driven convection is reduced under microgravity con-
dition, Marangoni convection, in particular, is sup-
posed to become more important and have a decisive
effect on crystal growth in space, which has been stud-
ied actively in recent years [1]. When the temperature
gradient is imposed vertically on the horizontal liquid
layer the top surface of which is free and cooled and
the bottom is on a heated rigid wall, the Marangoni
convection occurs under a certain critical condition.
Such an instability problem in an infinite liquid layer
was first analyzed by Pearson[2] and Nield [3] who
investigated the effect of buoyancy on the onset of
Marangoni convection.

When a magnetic field is imposed on an electrically
conducting liquid, the liquid motion is suppressed
because of the interaction between the induced electric
current and the external magnetic field [4]. The
magnetic field, therefore, is considered to be an
effective means for suppressing the onset of con-
vective motion so far as the liquid is electrically
conductive.

Convective instability induced by buoyancy in a
magnetic field has been studied by Chandrasekhar [5]
and the instability problem of Marangoni convection
in a magnetic field has been discussed by Nield [6] and
Rudraiah et al. [7] for the infinite liquid layer.

However, the instability problem in a finite liquid
layer confined in a container may become more impor-
tant in practical cases, which makes the problem more
complicated.

The onset of buoyancy convection in a box, the
top and bottom surfaces of which are rigid, has been
analyzed by Davis [8] and developed by Catton [9]
who has used the complete set of trial functions. The
onset of Marangoni convection and of buoyancy con-
vection in a circular cylindrical container has been
analyzed in a sophisticated way by Vrentas et al. [10],
though the combined case has not been considered.
These authors, however, have not investigated the
effect of a magnetic field.

The objective of the present study is to make clear
the effects of the magnetic field and the aspect ratio
of the liquid layer on the onset of pure Marangoni
convection.

A theoretical study is carried out on the instability
problem of pure Marangoni convection in a hori-
zontal layer of an electrically conducting liquid. The
analytical solution is obtained for the case of the infi-
nite liquid layer, and the numerical analysis is carried
out for the finite liquid layer.

The effects of the Hartmann number, the orien-
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A aspect ratio, R/L

Bi  Biot number, equation (16)

h  magnetic field

h, intensity of initial magnetic field

non-dimensional magnetic field, h/A,
Z-component of non-dimensional
magnetic field
non-dimensional wave number
depth of liquid layer
Hartmann number, equation (9)
a Marangoni number, equation (17)
a, critical Marangoni number
. defined by equation (7)

defined by equation (6)
o radius of container

temperature
w temperature at bottom wall
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NOMENCLATURE

T, temperature at free surface

v velocity

V  non-dimensional velocity, v/(x/L)

V, Z-component of non-dimensional
velocity.

Greek symbols
o heat transfer coefficient at the free surface
dynamic viscosity
non-dimensional temperature
thermal diffusivity
permeability
kinematic viscosity
po  density
g electrical conductivity
o, temperature coefficient of surface tension.

=® J3 o=

tation of the magnetic field, the Biot number at the
free surface, and the aspect ratio of the liquid layer
are discussed.

GOVERNING EQUATIONS

The onset of convective instability in a horizontal
liquid layer as shown in Fig. 1 is considered. The
perturbation equations (1)—(5) are obtained from the
magnetohydrodynamic equations which are derived
" on the basis of the following assumptions.

(a) Liquid is incompressible and the Boussinesq
approximation is valid.

(b) Magnetic permeability and other physical prop-
erties of liquid are constant.

(c) Liquid is Newtonian.

(d) Electromagnetic field obeys the Maxwell equa-
tions.

(e) Magnetic field is uniform and the angle of incli-
nation from the vertical is denoted as § (Fig. 1).

(f) Instability occurs as a steady convection.

Continuity equation

divV = 0. )
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FiG. 1. Horizontal layer of an electrically conducting liquid
under magnetic field.

Momentum equation
A*V,+Q{cosd (6/6Z)+sind(8/8X)}AH, = 0. (2)

Energy equation

V,+A0 =0. (3)
Magnetic field equation
divH =0 “

{(cos 8(3/0Z)+sin 8(3/8X)} V,+ Pr,AH, =0  (5)

where the coordinates, the velocity, the temperature
and the magnetic field are nondimensionalized by ref-
erence quantities L, x/L, |T,,— T,| and h,, respectively.
Parameters Q and Pr,, are defined as

Q = (LL?h5)/(pokv) ()
Pr,, = 1/(oux). @)

The momentum equation can be transformed into
a more convenient form by eliminating H, from equa-
tions (2) and (5)

AV, —M*{cos5(0/0Z) +sin 6(3/0X)}°V, =0 (8)
where M is the Hartmann number defined below

which represents the intensity of the magnetic field
relative to the viscous effect

M? = Q/Pr, = (WeLh3)/(pov). ®

Equations (1), (3), (4) and (8) are the required per-
turbation equations.

ONSET OF MARANGONI CONVECTION IN
THE INFINITE LIQUID LAYER

Analysis of normal modes
The analysis can be made in terms of two-dimen-
sional periodic waves for the case of an infinite liquid
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layer as analyzed by Chandrasekhar [5] and Pearson
(2.

The perturbed variables ¥V, and 8 can be expressed

as
vV, KZ
( 9’) = (GEZ;)CXP [i(k. X +k,Y)] (10

where k = /(k}+k}) is the wave number of the dis-
turbance and i represents the imaginary unit.

The following equations are derived by substituting
equation (10) into equations (8) and (3):

[(D*—k?)?— M *(cos 5D +ik, sin8)2)F(Z) = 0 (11)
F(Z)+(D*—k»)G(Z) = 0 (12)

where D" = d%/(dz").
The equation for G(Z) is obtained by eliminating
F(Z) from equations (11) and (12)
[(D*=k?)® — M*(cos 6D +ik, sin 8)>
x (D*~kHG(Z) =0. (13)
The corresponding boundary conditions are
G=(D"-k’)G=DD*-k)G=0 at Z=0
(14)
D*-k*)G =0, DG= —BiG,
D*(D*—k*)G = Mak®G at Z=1 (15)

where Bi and Ma are the Biot number and the Maran-
goni number, respectively

Bi=alL/i
Ma = (6, ATL)/(ku).

(16)
a7

The Biot number represents the heat-transfer con-
dition at the free surface where the heat-transfer
coefficient is nondimensionalized by the thermal con-
ductivity of the liquid and the depth of the layer.
The Marangoni number represents the surface tension
force relative to the viscous effect.

Onset of Marangoni convection under vertical magnetic
field

Let us consider at first the case when the magnetic
field is imposed in a vertical direction, namely é = 0
(Fig. 1). The effect of the inclined magnetic field will
be discussed later.

In this case, equation (13) can be solved analytically
under boundary conditions (14) and (15) and the
critical Marangoni number Ma, is obtained as

Ma, = (M*C3)/(C,sinhk+C,coshk+Cy) (18)
where
C, = {(ksinhk+ Bicoshk)C,
— (k*M)/(/ (M*+4k?)(cosh \/(M*
+4k*)—1)+ BiC,}/(kcosh k
+ Bisinh k)
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C, = Bsinha—asinh
Cs = (1/2) (\/ (M +4k?) sinh M
— Msinh/(M?+4k?))
o = (1/2)y/(M+ (M?*+4k?))
B = (1/2) (M —J(M?+4k?)).

When M?*— 0, equation (18) agrees with the solu-
tion obtained by Pearson [2] by asymptotic analysis,

Equation (18) represents the critical Marangoni
number corresponding to a certain wave number.
Therefore, the minimum value against the change of
wave number represents the real critical Marangoni
number and the corresponding wave number becomes
the critical wave number. Hereafter, the minimum
critical Marangoni number is referred to simply as the
critical Marangoni number. The critical Marangoni
number and the critical wave number are, respectively,
denoted by Ma_ and k..

The critical Marangoni number and the critical
wave number are listed in Table 1.

When M? — oo and Bi — 0, the critical wave num-
ber and the critical Marangoni number are expressed
as the results of asymptotic analysis

ke - {(1/2)M}?
(M?* > o0,Bi—0)

(19
Ma, - M2 (20)

The expressions for k. and Ma, for the case of M2 —
oo and Bi — oo are obtained in the same way

k. — (1/4)M
(M? — o0, Bi — o0)
Ma, —8Bi M.

@D

(22)

In the case of buoyancy convection, the critical
Rayleigh number becomes independent of the Biot
number at the free surface when M? is sufficiently
large [5, 11].

On the other hand, the dependence of the critical
Marangoni number on Bi is crucial as Nield [6]
has pointed out, though the expressions obtained by
Nield are slightly different from equations (20) and
(22).

The critical Marangoni number, however, should
become independent of Bi when M ? is extremely large
compared with Bi, which will be discussed below.

Figure 2 shows the dependence of the critical
Marangoni number on the squared Hartmann
number. The broken lines in the figure indicate the
critical Marangoni number corresponding to zero
magnetic field and the relations expressed by equa-
tions (20) and (22) are also indicated in the figure.

The effect of the magnetic field is negligibly small
when the squared Hartmann number is smaller than
unity. The effect becomes remarkable when
M? > 100. The critical Marangoni number increases
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Table 1. Critical Marangoni number and critical wave number in infinite liquid layer under vertical magnetic field

Bi
M? 0 0.01 0.1 1.0 10.0 100.0 1000.0 10000.0
0 Ma. = 79.6067 79.9913 83.4267 116.127 413.440  3303.83 32170.1 320827
k.= 1993 1.997 2.028 2.246 2.743 2976 3.010 3.014
0.1 79.8645 80.2500 83.6933 116.467 414,409 331076 322364 321487
1.995 1.999 2.030 2.249 2.746 2.980 3.014 3.018
1.0 82.1724 82.5657 86.0789 119.505 423.051 337242 328267 327363
2.015 2.018 2.050 2.271 2777 3.016 3.051 3.055
5.0 92.1834 92.6100 96.4202 132.616 459.903 363340 353215 352196
2.094 2.098 2.132 2.364 2.903 3.165 3.204 3.208
10.0 104.223 104.688 108.844 148.260 503.007 393480 38196.4 380805
2.181 2.185 2.220 2.465 3.042 3.331 3.375 3.380
20.0 127.111 127.647 132.431 177.691 581.952 447693 43351.1 432081
2.325 2.329 2.367 2.634 3.278 3.617 3.670 3.676
50.0 189.873 190.586 196.954 256.912 784.055  5815.08 55987.1 557685
2.630 2.635 2.680 2.995 3.800 4.271 4.352 4.360
100.0 284.222 285.177 293.686 373432 1063.01 7568.02  72362.6 720264
2.959 2.965 3.017 3.391 4.396 5.058 5.183 5.197
200.0 455.762 457.107 469.090 580.792  1527.05 103028 97529.2 969 686
3.377 3.384 3.447 3.901 5.201 6.199 6.415 6.439
500.0 919.777 922.027 942.057 1127.31 2646.48 16268.7 150877 1.49654 x 10°
4.080 4.090 4.172 4.776 6.658 8.519 9.049 9.115
1000.0 1632.47 1635.91 1666.47 1947.33 4188.12  23560.6 213312 2.10960 x 10°
4.745 4.757 4.858 5.615 8.127 11.221 12.334 12.482
2000.0 2974.82 2980.17 3027.77 3462.53 6833.01 346245 303050 2.98388 x 10°
5.547 5.561 5.688 6.637 9.984 15.072 17.239 17.548
5000.0 6773.06 6782.92 6870.42 7663.45 13581.9 58779.7 483849 4.72266 x 10°
6.863 6.882 7.050 8.325 13.170 22.292 26.950 27.678
10000.0 12830.2 12846.0 12986.5 14252.8 234448 892496 693281 6.70356 x 10°
8.092 8.116 8.324 9.909 16.256 29.676 34.988 35931
20000.0 24 562.5 24 588.1 24815.5 26855.6 41280.8 137798 943258 —
9.565 9.595 9.850 11.808 20.047 39.448 44.874 —
50000.0 58678.4 58727.4 591614 63035.1 89 568.2 — — —
11.963 12.001 12.335 14.904 26.359 — — —
100 000.0 114213 114293 115005 121338 163789 — — —
14.187 14.234 14.640 17.780 32.333 — — —

infinitely with the increase of M2 It is clear that
relation (20) is valid for M2 — o0, Bi — 0 and relation
(22) also holds good for large M? and Bi, though
relation (22) is a slight overestimation.

Although relations (20) and (22) cross at
M? = 64Bi?, the actual instability curves cannot cross
each other. Relation (20) holds again when M? is
extremely large compared with a given large Biot
number, that is, M2 > 64Bi%. In other words, each
of the curves approaches the relation Ma, - M? for
extremely large M2, even if the Biot number is
large.

Figure 3 shows the dependence of the critical wave
number on the squared Hartmann number. The effect
of the magnetic field appears when M? > 100. The
wave number increases infinitely with the increase of
M?. In other words, the distance between the cells

becomes shorter as the intensity of the magnetic field
increases.

Figure 4 shows the dependence of the critical
Marangoni number on the Biot number. The critical
Marangoni number increases in proportion to Bi
when Bi is large. In the case of buoyancy convection
[3, 5, 11] the critical Rayleigh number has a finite value
even if the Biot number is infinite. On the contrary, the
onset of Marangoni convection is completely sup-
pressed when Bi is infinite.

Figure 5 shows the dependence of the critical wave
number on the Biot number. The critical wave num-
bers approach constant values when the Biot number
is either very small or very large and they change
greatly in the intermediate region. The rate of change
in that region becomes large with the increasing inten-
sity of the magnetic field. The flow patterns become
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........ Critical Marangoni number
under zero magnetic field
—-— eq.(20)
———— q.(22) -

Critical Marangoni number Ma,

Squared Hartmann number M*

Fic. 2. Dependence of critical Marangoni number on
squared Hartmann number.

very sensitive to the Biot number as the Hartmann
number increases.

Effect of orientation of magnetic field
When the magnetic field is inclined from the verti-
cal, the new parameters M* and C are used, which
were introduced by Chandrasekhar [5]
M* = Mcosé 23)
C =k tand. 24

Equation (13) is rewritten as below by using M*
and C

[(D?—k2)? — M*3 (D +iC)*(D?*—k»)]G(Z) = 0.
(25

The critical condition for the onset of Marangoni
convection is expressed as follows by solving equation
(25) under boundary conditions (14) and (15):
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where
a = (1/2) [(M*+a,) +ia]
B=1/2)[(M*—a)—ix]
o, = (1/i/2) / (J(M**+4k*)*+ 16 M **C?)
+ (M*? 4 4k?)

o = (1//DV/ (M*?+4Kk3) 2+ 16M*2C?)
+ (M*?+4k?)

and the overbar ~ on the variable represents the
conjugate complex number.

Table 2 shows the critical Marangoni number and
the critical wave number for M*2 = 10 where C is
changed from 0 to 10.

The critical Marangoni number corresponding to
C = 0 is always the smallest even if M*? and Bi are
changed. This means that the rolls the axes of which
are parallel to the horizontal component of the mag-

Mak*e*  Mak’e™ [Mak®—o?(@*—k?)]e* [Mak®—a*(@*—k?)]e?
(Bi+k)e* (Bi—k)e * (Bit+a)e* (Bi—a)e™®
det 0 0 (@ —k?)e* (@ —k*e®
0 0 a(a® —k?) —a(@:—k?)
0 0 a’—k? &t —k?
B 1 1 1 1
[Mak®~B2(B*~k?)] e [Mak®—F*(B*—k?)] e |
(Bi+p) e Bi—pe?
(B*—k*ef B —k*e ! =0 (26)
B(B*—k?) - BB —k?)
B%—k? B2 —k?
! i
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FiG. 4. Dependence of critical Marangoni number on Biot
number,

netic field are generated when the magnetic field is
inclined, while the Bénard-type cells are generated
when the magnetic field is perpendicular to the hori-
zontal liquid layer.

It is found that the effect of inclined magnetic field
on the flow pattern of Marangoni convection is similar
to that of the buoyancy convection analyzed by Chan-
drasekhar [5]. The horizontal component does not
have any effect at all on the critical Marangoni
number. What is effective in suppressing the onset of
the Marangoni convection is the vertical component
of the magnetic field, as in the case of buoyancy con-
vection. The results shown in Figs. 2-5 are applicable
for the case of an inclined magnetic field only if M?
is replaced by M*?

ONSET OF MARANGONI CONVECTION IN A
CIRCULAR CYLINDRICAL CONTAINER

The onset of convective instability in a circular cyl-
indrical container as shown in Fig. 6 is considered.

A vertical temperature gradient, decreasing from
the bottom toward the top, and a vertical magnetic
field are imposed on the liquid layer in the container,
the side wall of which is thermally insulated.

------- Critical wave number
for Bi= 0

o
A
g
g
___loog__ 7
; 100
5 _::W
EES ==
M'=0
i " - i e i — L J
107 10 10 10 10’ 1 100 10 10
Biot number Bi

FIG. 5. Dependence of critical wave number on Biot number.
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Table 2. Critical Marangoni number and criti-
cal wave number in inclined magnetic field

Bi

C 0 1 10

0 Ma, =1042 1483 503.0
k.=2.18 2.46 3.04

0.5 104.6 148.8 504.3
2.18 247 3.06

1.0 105.8 150.3 508.4
2.18 2.48 3.07

5.0 140.4 194.0 620.0
243 2.75 3.46

10.0 223.5 295.2 851.9
2.88 332 425

The aspect ratio A is defined as the ratio of the
radius of the container to the depth of the liquid layer.

Analysis by Galerkin method

Let us assume that the steady convection occurs as
two-dimensional concentric rolls at a marginal state.

Perturbation equations (3) and (8) should be ex-
pressed by a cylindrical coordinate system in this
case.

Such a problem can be analyzed by the Galerkin
method as Davis [8] and Catton [9] have done for the
case of buoyancy convection.

V, and € are expanded, respectively, with a series of
trial functions F;; and G,; which satisfy the cor-
responding boundary conditions

V,=ao,F; 27)
0 = ﬁijGij (28)

where Einstein’s convection of summation is applied
and

Fij = bo, (RIA) f{(Z)
G = Jo(uR/A)g,(Z)
byim(R) = {Ju (A R)}{ T o(An) }
LR} {To ()}
N2y =(1-2)z"!
G(Z)=2Z"

J, and I, are the Bessel function and the modified
Bessel function of the first kind of order », respec-
tively.

A,, and u,, are the roots of the following equations :

bi:m(l) =0
Jl(.um) = 0

The boundary conditions at the free surface, equa-
tions (31) and (32), as shown below are not satisfied

29
(30)
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FiG. 6. Electrically conducting liquid in circular cylindrical
container.

yet, but will be satisfied in the surface integrals

AVZ = —MaAuo (31)

at Z =1

00/0Z = —Bif (32)

where Ay represents the two-dimensional Laplace
operator related to a horizontal plane.

The following matrix equation is obtained by sub-
stituting equations (27) and (28) into equations (8)
and (3) and applying the Galerkin method

(A“~B,,——M2C“ —MaA,, )(aij>_0
Ay —(A,;+BiB,)) ﬂij
(33)
where
A[[ = AFm,,AEde
»
AIZ - (a/aZ)anAIIGij dS
Jz=1
"
Ay = GmnFij dv
r
A;, = | VG, VG;; dv
o
Bl 1= (a/aR)anAEj dS
JrR=4
o
BZZ - GmmGij ds
Jz=1
-
CIl = an(az/azz)ﬂjdv

LY

where the integrals with d.S and dv are the surface and
the volumetric integrals, respectively.

Marangoni convection occurs only when the
coefficients «;; and f,; have non-trivial solutions. The
condition is given below

det [(I/Ma)l_(Au_Bn_Mzcll)_l
XA (A +BiBy) Al =0 (34)

HMT 31:2-PF

10°

_____ Critical Marangoni number
for infinite liquid layer

._.
<
T

Bi=100, M’ =100

Bi= lﬂa E'ZO
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Bi=10, M*=10

Bi=~10, M'=0
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Bi=0, M’ =10

Critical Marangoni number Mac
g
T

Bi=0, M’=0

o . . . -
! 5

1 2 3 4 6 7
Aspect ratio A

FiG. 7. Dependence of critical Marangoni number on aspect
ratio.

where I denotes the unit matrix and the quantities
with exponent — 1 represents the inverse matrix.
Equation (34) is an eigenvalue equation where
1/Ma is the eigenvalue. The Marangoni number cor-
responding to the maximum eigenvalue for given M?,
Bi and A represents the critical Marangoni number.

RESULTS AND DISCUSSION

Critical Marangoni numbers are listed in Table 3.

The dependence of the critical Marangoni number
on the aspect ratio is shown in Fig. 7 for the cases of
Bi =0, 10 and 100, where broken lines indicate the
critical Marangoni number for the infinite liquid layer.
As is expected, the critical Marangoni number
increases as the aspect ratio decreases since the dis-
turbances are damped down in the vicinity of the side

__ Critical Marangoni number
under zero magnetic field
€q. (20)

o
L]
=
-
E Bi=100, A=05
10 o
; Bi=
Bi=100, A==
10 __
Bi=0,A=05
q 10’ | Bi=0, A1
g Bi=0, A=w

1 P . . s N s
10* 107 10 10° 100 100 1w0* 10 10* 10
Squared Hartmann number M’

FiG. 8. Dependence of critical Marangoni number on
squared Hartmann number.
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Table 3. Critical Marangoni number in circular cylindrical

container
A
M? 0.5 1.0 3.0 5.0
(a) Bi=0
0 774 204.3 86.38 81.85
1 776 206.0 88.97 84.40
10 789 221.1 110.9 106.4
100 920 367.6 291.8 286.8
1000 2110 1685 1653 1640
(b) Bi=1
0 869 253.5 124.0 81.85
1 870 255.6 127.4 84.40
10 885 274.3 155.8 106.4
100 1032 455.3 381.5 286.8
1000 2364 2030 — —
(c) Bi = 10
0 1694 677.8 431.6 420.0
1 1697 683.3 441.1 429.6
10 1726 732.4 521.4 509.5
100 2010 1198 1079 1074
1000 4550 4250 4240 —
(d) Bi =100
0 9642 4798 3421 3345
1 9660 4836 3489 3413
10 9820 5174 4045 3976
100 11400 8260 7644 —
1000 24200 23380 — —

wall because the boundary condition
Vg =V, =080/0R = Q.

However, the effect of the aspect ratio on the critical
Marangoni number becomes smaller with the increase
of the Hartmann number and the Biot number.

Figure 8 shows the dependence of the critical
Marangoni number on the squared Hartmann num-
ber where broken lines indicate the critical Marangoni
number under zero magnetic field.

As mentioned previously, with the increasing inten-
sity of magnetic field, the critical Marangoni number
becomes independent of the aspect ratio and
approaches the value in the infinite liquid layer.

The distribution of the vertical component of vel-
ocity on the horizontal plane Z = 1/2 is illustrated in
Fig. 9 for Bi = 0 where the velocity on the axis R =0
is normalized as 1. The velocity distribution in the
infinite liquid layer is also indicated for comparison
which is expressed below in the case of the cylindrical
coordinate system

Vz =Jo(k:R) (4 - 0) (35

where k_ is the critical wave number in the infinite
liquid layer which has been obtained in the previous
sections.

The velocity component for 4 = 1 is suppressed to
zero because of the effect of the side wall and it differs
remarkably from those for 4 = 3,5 and oo when the
Hartmann number is zero (Fig. 9(a)).

T. MAekawA and 1. TANASAWA
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The difference, however, becomes small with the
increase of the Hartmann number and the Biot num-
ber (Fig. 9(b)), which explains why the effect of the
aspect ratio vanishes and the critical Marangoni num-
ber approaches that of the infinite liquid layer when
M? is large. The distance between the rolls becomes
shorter and the velocity and temperature fields are
unaffected by the existence of the side wall when M?
and Bi are large.

CONCLUSION

The onset of Marangoni convection in the hori-
zontal layer of an electrically conducting liquid has
been studied theoretically and the following results
have been obtained.

(1) The effect of the magnetic field on the onset of
Marangoni convection is negligibly small when the
squared Hartmann number M ? is smaller than unity.

(2) The critical Marangoni number Ma, for large
M? is expressed by the following relations:

Ma, - M?;
Ma, — 8Bi M (for M? < 64Bi?)
Ma,—» M?*(for M? 2 64Bi%).

for small Bi,
for large Bi,

(3) The critical Marangoni number increases in pro-
portion to Bi when Bi is large.

(4) The rolls, the axes of which are parallel to the
horizontal component of the magnetic field, are gen-
erated in the case when the magnetic field is inclined.

(5) The effect of the aspect ratio of the liquid layer
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on both the critical Marangoni number and the vel-
ocity field vanishes at large M~

L.

2.

3.
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EFFET DU CHAMP MAGNETIQUE SUR L’APPARITION DE LA CONVECTION DE
MARANGONI

Résumé—On étudie théoriquement I'apparition de la convection de Marangoni dans une couche horizontale
de liquide conducteur d’électricité, auquel on applique un gradient vertical de température et un champ
magnétique. La solution analytique est obtenue pour la condition critique de ’apparition de la convection
de Marangoni dans une couche infinie de liquide et la solution numérique pour une couche finie liquide
confinée dans un conteneur cylindrique. On clarifie les effets du champ magnétique, du nombre de Biot 4
la surface libre et le rapport de forme de la couche liquide. On obtient aussi le comportement asymptotique
du nombre critique de Marangoni pour une grande valeur du nombre de Hartmann. On trouve que le
nombre de Marangoni critique et le nombre de rouleaux qui se générent dans un état marginal augmentent
tous deux avec 'intensité du champ magnétique, et que I'effet du rapport de forme de la couche liquide,
du nombre de Marangoni critique et des champs de vitesse et de température, devient faible quand le
champ magnétique est intensifié. I est clair que les rouleaux sont générés quand le champ magnétique est
incliné, tandis que les cellules de type Bénard sont générées avec un champ magnétique vertical dans le cas
d’une couche liquide infinie.

DER EINFLUSS EINES MAGNETISCHEN FELDES AUF DAS EINSETZEN DER
MARANGONI-KONVEKTION

Zusammenfassung—Das Einsetzen der Marangoni-Konvektion in einer horizontalen Schicht einer elek-
trisch leitenden Fliissigkeit wird theoretisch untersucht. Dabei wird dieser Schicht ein vertikaler
Temperaturgradient und ein magnetisches Feld aufgeprigt. Die analytische Losung ergibt die kritischen
Bedingungen fiir das Einsetzen der Marangoni-Konvektion in einer unendlichen Fliissigkeitsschicht. Eine
numerische Analyse wurde fiir eine endlich ausgedehnte Fliissigkeitsschicht in einem kreiszylindrischen
Behilter durchgefiihrt. Die Einfliisse des magnetischen Feldes, der Biot-Zahl an der freien Oberfldche und
des Lingenverhdltnisses der Fliissigkeitsschicht sind deutlich geworden. Das asymptotische Verhalten der
kritischen Marangoni-Zahl bei groBer Hartmann-Zahl wurde auch ermittelt. Es zeigt sich, daB die kritische
Marangoni-Zah! und die Zahl der Konvektionszellen, die bei einem Grenzzustand entstehen, mit der
Intensitdt des Magnetfeldes zunehmen. Der EinfluB des Lingenverhiltnisses der Fliissigkeitsschicht auf
die kritische Marangoni-Zahl und das Geschwindigkeits- und Temperaturfeld wird mit stirker werdendem
magnetischen Feld kleiner. Man erkennt auch, daB bei geneigtem Magnetfeld Konvektionszellen erzeugt
werden, wahrend Bénard-Zellen bei vertikalem Magnetfeld im Falle einer unendlichen Flissigkeitsschicht

entstehen.

BJUAHUE MATHHUTHOI'O NNOJIA HA BO3HUKHOBEHHUE KOHBEKIIUU MAPAHI'OHH

AnpoTaims—TeopeTHYecKH HCCIEAyeTCs BO3HHKHOBEHHE KOHBEKIWH MapaHIrOHH B IOPH30HTAJbLHOM
CJI0€ 3JIEKTPONPOBOJHON XHAKOCTH B Cllydyae BEPTHKAJIBLHOTO TEMIEPATYPHOTO IPAaMEHTa B IPHIIOXKE-
HUg MaraaTHoro nons. [osydeHo aHaIMTHYECKOE pEIlCHHE IS KPHTHYECKHX YCIOBHI BO3HHKHOBEHHS
KOHBEKIHH MapaHronn B GeCKOHEYHOM CJIO€ XHAKOCTH, MPOBENCH YHCIICHHBIA AHANH3 [UIA [FUIHHIDA.
Hccnenosano BimMsHUE MATHUTHOTO N0, acaa Bro Ha cBOGOXHO#M TOBEPXHOCTH H OTHOILICHHSA CTOPOH
cios xuakocTd. HafineHo acumnroTHyeckoe noBeeHUEe KPHTHYECKOrO YHCIa MapaHronu s 6oapmmx
uncen ['aptmana. OGHapYXeHO, 4TO KPHTHYECKOE YHC/IO MapaHroHH M KOJIH4eCTBO siYéeK B BHIE Baja,
BO3HHKAIOUIMX B NPOMEXYTOYHOM COCTOSHHH, YBEIHYHBAIOTCA C POCTOM HANPAXEHHOCTH MarHHTHOTO
MOJIfA, 3 BIMAHHE OTHOLIEHHs CTOPOH CJIOf HA KPHTHYECKOE YHC/IO MapaHTOHH H mOJie CKOPOCTH H TEM-
MEepaTyphl YMEHBLIAETCA OPH YBEIMYEHHH HANpPsKCHHOCTH MarHuTHoro nmons. Halimeno, yro B cnydae
6eckOHEYHOro C10s XHAKOCTH AYEHKH B BHIE BaJia o6pa3yloTCA NpH HakJOHHOM MarHHTHOM MOJE, a
sqefikuy BeHapa—npH BEPTHKAJILHOM.



